
however, as a large expanse of detailed
graphics will always take up a lot of bulk.

There are a few downsides to the
game. Compatibility across the EPOC32
range is almost non-existent. The game
runs on the Series 7 and Netbook only, and
given the reliance of colour and the vertical
orientation of the level screens, it's unlikely
that a Series 5 or Revo port will appear.
The game also runs a little slowly, with
noticeable delays when bubbles are about to
burst.

While the interface is straightforward
it doesn't even pay lip service to EPOC32
conventions, so your Menu key won't work,
and Control-E won't exit from the game.
The program does respond to some
EPOC32 events, though, and it is possible
to close it from the system screen.

All the basic features are present in
this game: sound can be controlled, and the
keys can be changed to your preference.
There's also the opportunity to save a game
if you have to leave it half way through.

All in all this is a very good game for
the platform, and the authors should be
encouraged to write more. It certainly has
the “wow” factor, and can be used to show
off your EPOC32 machine to your friends.
If you're not short of memory or disk space,
and enjoy a challenging puzzle game, then I
can heartily recommend it—it's free, after
all.

By Patisoners
URL www.vakoveverky.net
Licence Freeware
Compatibility Series 7 & netBook
Rating � � � �

A newcomer to the EPOC32 gaming scene,
Frozen Bubble was released for the Series 7
and Netbook in October 2007. It's a
puzzle-style arcade game, where the object
is to burst all the coloured bubbles on each
level with the aid of a directed cannon. The
bubbles are stuck to the ceiling of each
level, and the bubbles must be burst before
the ceiling is lowered to the ground. The
cannon fires coloured bubbles, and must be
aimed so that they hit bubbles of the same
colour, which then burst and fall to the
ground.

What's most striking about this game is
its addictiveness. Once started, it's difficult
to put down. The graphics are excellent,
much better than we're generally used to on
this platform. Sound is also rather good.
The downside of this is that the sound and
graphics take up a lot of space: the whole
package takes nearly 6mb of space, and a
further 1.8mb of memory to run. There's
little that a developer can do about this,

Blowing Bubbles
The new Frozen Bubble game, as
reviewed by Damian Walker

Issue 2: January 2008

Edited by Damian Walker

Animating OPL
The second in our programming series by Damian Walker

Laying the Tiles
Now we can get down to some
programming. Create a new Program file
called Bouncer.opl. We'll start simply, by
putting the tiled floor on the screen. This is
done very simply: by loading the
Floor.mbm image and placing copies of it
across the whole screen. The following
procedure does this for us:

PROC DrawFloor:
LOCAL floor%,x%,y%
floor%=gLOADBIT

�

� ("\Bouncer\Floor.mbm")
gUSE 1
x%=0
WHILE x%<gWIDTH
y%=0
WHILE y%<gHEIGHT
gAT x%,y%
gCOPY floor%,0,0,16,16,3
y%=y%+16
ENDWH
x%=x%+16
ENDWH
gCLOSE floor%
ENDP

Happy New Year, and welcome to the
second issue of EPOC Entertainer. The last
issue was well received, with a number of
positive comments sent back to me by email
and on the forums. Keep them coming!

I'd be particularly interested to hear
what else you'd like to see in the magazine.
Even better, volunteers for article writing
would be welcome...

I've managed to squeeze in two reviews
in this issue, as well as the second part of

our popular programming tutorial. This
month we'll actually get around to some
OPL programming!

Keen-eyed readers will notice some
stylistic changes to this issue. As EPOC
Entertainer is quite new, I'll be
experimenting with style over the next few
months until, hopefully, I can settle on
something both you and I are happy with.

entertainer@snigfarp.karoo.co.uk

Lines starting with

�

� should be added to
the previous line. Here's how it works. Up
to 64 bitmaps or windows, collectively
called drawables, may be loaded into
memory at a time. Each is given a unique
ID number, by OPL, not by the
programmer. This is what the floor%
variable is for. The x% and y% variables
are counters used to count our way across
and down the screen.

The gLOADBIT function loads the
Floor.mbm image, and returns the ID
number for us to use to refer to it. It also
has the side effect that any further drawing
commands will manipulate the newly
loaded bitmap, rather than the main screen.
We don't want this, so the gUSE command
tells OPL to turn the attention of subsequent
drawing commands back to the screen, itself
regarded as a drawable whose ID is 1. The
OPL manual refers to the destination of its
drawing commands as the current
drawable.

The gAT and gCOPY statements
within the two nested WHILE loops copy
the floor tile to each successive location on
the screen. The gAT statement tells OPL to
turn its attention to a particular part of the
current drawable, while gCOPY copies
there all or part of another bitmap. In our
case, that other bitmap is the floor tile
bitmap floor%, and the following four
parameters indicate that we're copying all of
it (16×16 pixels aligned with its top left
0,0). The final 3 is a flag to indicate that the
floor tile should completely overwrite what
was there before.

At the end of the procedure, the
gCLOSE statement tells OPL to forget
about our floor tile bitmap, now that we've

finished with it. Remember that OPL can
keep track of a maximum of 64 drawables at
a time. While that's more than we're going
to need for this demonstration, it's always
good practice to close a loaded bitmap, or
any other drawable, when it's no longer
needed.

Drawing the floor is only one of a
series of tasks we'll be performing in our
demonstration, so I've put it in its own
procedure to keep it self-contained. In order
to organise this and future procedures, you
will need to add the following procedure to
the top of the program:

PROC Bouncer:
DrawFloor:
DO UNTIL GET=27
ENDP

There's not much here at the moment, but
we'll be adding to it as we develop new
procedures. Currently it calls our
DrawFloor procedure, and when that's done,
it waits for the ESC key to be pressed
before quitting the program. With the
graphics drawn, and these two procedures
entered, the program is ready to translate
and run.

If you think I'm glossing over some of
these new statements and functions, you're
right. The OPL manual gives a more
detailed explanation of these commands,
and if you want to learn more about these
and future statements and functions I'll
introduce, then I recommend you keep the
manual handy and look them up.

In the next issue I'll be introducing
sprites, the animated moveable graphics that
we'll be using for the ball itself.

Off the Rails
A look at AORailSim, as
reviewed by Damian Walker

On desktop machines, there is a popular
genre of games almost entirely missing
from the EPOC platform: the railway
simulator, On the PC, this is exemplified by
Railroad Tycoon, Transport Tycoon,
Transarctica and a host of others. The
closest we come on the Psion is Adelino
Oliveira's AORailSim,

AORailSim is a simple real-time
puzzle game that concentrates on the
routing of trains along an existing section of
railway. The aim of the game is to route
trains safely from one end of the track to the
other, by ensuring that various sets of points
are set correctly at the crucial moment
before the train passes them. Failure means
that two trains can suffer a head-on crash,
losing the game.

Like all games from this author the
graphics are very simple, In some instances
simplicity is best, but the spartan graphics
of AORailSim go a bit too far. Railways
are represented by plain straight lines, trains
by circles containing a letter. Points are
numbers next to the appropriate junction.

Sound is non-existent in the game.
While this is useful for a quick game in a

crowded room, it would have been nice to
have a few noises that could be switched on
or off.

Of course, it could be that game play
saves the game where presentation fails. In
this case, I think that the lack of graphics
and sound makes the game completely
devoid of atmosphere, so that even railway
fans will find it difficult to identify with the
theme. The idea of the game is sound,
though, and I find myself giving it a brief
try every now and then.

On the technical side, the simplicity of
this bare-bones game does give it a small
memory footprint, and leaves little
opportunity for bugs to creep in. It also
respects standard EPOC conventions, like
Ctrl+E, and system events.

On the other hand, there is no
compatibility with screen sizes other than
the Series 5. This presents no problems for
users of the Series 7, netBook and GeoFox
One, but Revo and Osaris owners are left
out in the cold. The timing of the game
appears locked to the machine's processor
rather than its clock, meaning that speed
settings are not consistent across machines,
but this is unlikely to be a problem.

All in all one must judge this game for
what it is: a simple puzzle game kindly
released free of charge by its author. But
fans of railway simulation and management
ought not to pin their hopes on this game.

By Adelino Oliveira
URL www.tucows.com/preview/57363
Licence Freeware
Compatibility Series 5 & 5mx
Rating � �

